Embedded air channels transform soft lattices into sensorized grippers
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Abstract— Sensing plays a pivotal role in robotic manipula-
tion, dictating the accuracy and versatility with which objects
are handled. Vision-based sensing methods often suffer from
fabrication complexity and low durability, while approaches
that rely on direct measurements on the gripper often have
limited resolution and are difficult to scale. Here, we present
a soft robotic gripper made out of two cubic lattices that are
sensorized by embedding air channels within the structure. The
lattices are 3D printed from a single build material, simplifying
the fabrication process. The flexibility of this approach offers
significant control over sensor and lattice design, while the
pressure-based internal sensing provides measurements with
minimal disruption to the grasping surface. With only 12 sen-
sors, 6 per lattice, this gripper can estimate an object’s weight
and location and offer new insights into grasp parameters like
friction coefficients and grasp force.

I. INTRODUCTION

Sensing in manipulation is critical to understanding what
is being grasped. Traditionally, manipulation tasks have
relied on external vision systems to report where objects
are and plan accordingly [1]. However, there are significant
issues with vision-only approaches. Occlusion often occurs
in manipulation scenarios, especially during and after the
grasping process. Furthermore, some properties are difficult
to verify visually, such as the weight or stiffness of an
object. Adding sensing within a robot’s hand can address
these issues. Whether by putting a camera in the hand itself
[2], [3], measuring actuation effort [4], or adding force and
strain sensors to the finger [5], in-hand sensing solutions
allow for direct measurement of the grasping process. While
the extra information is useful, these systems add signif-
icant complexity to the fabrication of the grippers while
simultaneously introducing new issues. Vision-based systems
are often not durable enough to withstand the fatigue of
grasping [6], while purely tactile or proprioceptive sensors
do not have the resolution needed to determine granular
object information [7]. There is a need for a robust sensing
methodology that provides sufficiently detailed information
for manipulation while minimizing added complexity to the
fabrication process.

In this work, we address this need by creating a soft
robotic grippper made out of internally sensorized cubic
lattices (Fig. 1). These lattices are 3D printed, allowing for a
one-step fabrication of both structure and sensing elements.
This easy fabrication allows for a high density of sensors
(6 per finger), while remaining simpler than vision-based
systems. Furthermore, the internal nature of these air-based
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Fig. 1: Soft elastomer lattices are 3D-printed with L-shaped
channels (highlighted in the inset) and mounted on a parallel
gripper. Closed off and connected with pressure sensors,
these channels provide sensory feedback during deformation.

sensors creates a more durable sensorized gripper while
maintaining a fast response time. A parallel jaw gripper made
of two of these lattices is able to do complex tasks like weight
estimation and object localization.

We achieve this performance through the fluidic innerva-
tion technique [8], which relies on variations in internal air
channel pressures to comprehend the forces acting on the
lattice. While this technique showed immense promise for
internal proprioception, no previous studies have explored
its application in contact scenarios. In this paper, we offer
an extensive analysis of this sensorization method within
the context of grasping and its implications for vision-less
manipulation tasks. Our contributions are:

1) Extension of the fluidic innervation technique to ac-

count for external contact

2) Characterization of the impact of lattice deformation

and transient effects on the sensor readings

3) Design and fabrication of a manipulator capable of

discerning an object’s weight and grasp location

II. RELATED WORK

In-hand object sensing for manipulation can broadly be
categorized into (1) vision-based tactile sensing and (2) direct
state measurements on the gripper itself.

Vision-based approaches have become quite popular due
to leveraging advances in computer vision to obtain high
resolution tactile information [7]. The most common ap-
proach is to point the camera towards a contact surface.
This surface either has large compliance and three-part
illumination, allowing for detection of object surface features
(GelSight-style sensors, after [2]), or is physically textured
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with ridges and markers so the camera can track movement
(TacTip-style sensors, after [3]). This sensing methodology
has been used in many impressive manipulation applications,
such as estimating shear forces [9], localizing a grasped
object [10], and dynamically swinging an object upright [11].
Despite the richness of this data, vision-based techniques
suffer from significant durability issues. Since the surface
must be soft enough for large deformations to be visible,
the surface can easily tear. This lets outside light bleed into
the camera aperture, creating out-of-distribution data that is
difficult to account for [6]. Another approach is to point the
camera towards the internal kinematic chain of the finger
[12], [13]. This avoids many of the durability issues of the
surface-based model. However, since these systems require
the camera to be physically embedded within the finger itself,
this introduces complexity to their fabrication.

For approaches measuring the gripper state, most hardware
innovation has happened within the realm of soft robotics. It
is difficult to incorporate sensors within a rigid structure, so
most proprioceptive sensing approaches rely on using motor
feedback [4], [14] or force-torque sensors attached to the
base of the end effector [15]. Soft robots have more design
flexibility for incorporating sensors, but these sensors must
comply with the object’s flexible geometry. Some sensoriza-
tion approaches include off-the-shelf force-sensitive resistors
and bend sensors [16], optical waveguides [5], capacitive
silicone sensors [17] and liquid metal strain sensors [18].
These methods all have the difficulty of ensuring sufficient
resolution. Rigid approaches can only give bulk information
about the grasping process, while soft robotic approaches
require manually placing sensors within a structure. Scaling
up these methods requires significant fabrication effort and
are limited by the physical space on the gripper.

Our system addresses the issues of both of these ap-
proaches by having a one-print fabrication method that can
embed many sensors. While the fluidic innervation method
cannot compare to the resolution of vision-based systems,
it still has sufficient sensitivity to achieve similarly complex
tasks (Sec. VI). Our sensorized grippers also avoid many
of the durability issues of vision-based systems since the
internal channels do not rely on a soft interface with the
grasped object. This lets us use a higher durometer material
(Shore hardness of 68) that protects the air channels from
being burst.

III. HARDWARE DESIGN

In this section, we discuss how we build a sensorized
gripper through fluidic innervation. We describe how we
design the lattices to accommodate a large amount of sensor
channels, the electronics necessary to read the pressures of
those channels, and the assembly of the lattices into a gripper.

A. Sensorized Lattice Design

The basis of our sensorized lattice design is our prior
work [8], where we 3D printed lattices out of an elastomeric
polyurethane (EPU 40, Carbon Inc.) with empty air channels
inside their struts. After sealing them off, the internal air
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Fig. 2: Sensor response to grasping a box with differ-
ent strengths. Initially, the voltages decrease for all grasp
strengths due to bending of the lattice. Later, while the box
is held in place, stronger grasps compress the lattice more
and lead to higher voltages.

channels experience a volume change as the lattices deform.
By the ideal gas law (pV = nRT), this change in volume
corresponds to a change in pressure, which can then be
measured using an off-the-shelf pressure transducer.

For our gripper’s fingers, we choose a 8 x 8 x 4 cubic
lattice with a unit cell size of 9 x 5 X 6 mm and a strut
diameter of 2.7 mm. When designing a channel, we need
to consider that the pressure is constant across its entire
length. A change in pressure is only expressed if the channel
experiences deformation along that length (i.e. changes to V'
in pV = nRT). This means that how a channel is routed
greatly affects what information it can capture. For example,
a vertical channel can only capture location information
horizontally, as a force at the top of the channel will create
the same response as the same force at the bottom of the
channel. To capture both horizontal and vertical information
within a single channel, we choose our sensor channels to be
in the shape of an L. This asymmetric L shape is particularly
useful since our gripper is composed of two lattices placed
opposite one another. The opposite-facing L’s complement
one another and give us more information about an object
grasped between the two jaws. The channels have an inner
diameter of 1.5 mm and are designed in Rhino Grasshopper.
Each lattice has 6 channels within the first layer away from
the gripper surface (Fig. 1 inset, light red). The L’s start from
the outermost edge of the lattice and nest inwards. Although
the lattice is printed with all 8 possible channels, preliminary
experiments show that the two innermost channels have too
little volume to provide a meaningful reading. We thus only
connect the outer 6 channels, leaving a blind spot on the top
left of the lattice. The opposite-facing lattice provides sensor
information for that area.

B. Readout Electronics

To read the pressures of the channels, we follow the same
methodology as [8]. Each of the embedded air channels is
sealed off on one end with a silicone sealant and connected
via silicone tubing to differential pressure transducers on the
other end. The transducers are connected to the analog inputs
of an Arduino Micro and sampled at 100 Hz.

We choose differential pressure transducers as they allow
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Fig. 3: Characterization of the sensorized lattice on tensile testing machine. First row of plots shows the sensor response
during compression. Second row of plots shows sensor response during bending. Column-wise, the plots belong to the sensor
highlighted in red in the top row cartoons. Barely visible error bands represent the standard deviation across 5 runs.

us to hook up a secondary line of tubing to serve as
the “ground” for the measured sensor value. We use this
secondary tube as compensation for thermal drift in the
main line. The fluidic innervation technique is sensitive
to temperature effects as, by pV nRT, a change in
temperature dramatically affects the pressure readings. By
cutting secondary tubing that is roughly the same volume as
the internal channel’s plus the signal tubing’s volume, we can
braid that tube with the signal one and compensate for any
thermal effects. Noting that the outermost channel (112 mm)
is 2.7 times the length of the innermost channel (42 mm) and
that the channel diameter (1.5 mm) is 1.5 times the tubing
diameter (1 mm inner diameter, 3 mm outer diameter), we
choose tubing lengths of 6, 8, 10, 12, 14, 16 inches for the
signal line and 9.75, 13, 16.25, 19.5, 22.75, 26 inches for
the thermal line.

We use 1 inch H20 transducers (All Sensors) for the left-
hand lattice, and 0.5 inch H20 transducers (All Sensors)
for the right-hand lattice. This asymmetry allows us to
simultaneously capture subtle changes as well as large scale
effects. Each of these transducers has their own offset voltage
that ranges from 2.15-2.35V when the pressure differential
is equal to 0. When we perform a reading, we subtract
this voltage offset. The exception to this is the experiment
on diffusion and leakage in Sec. IV-B, where we examine
the transducers signals from saturation (5 V) to equilibrium
(offset voltage).

C. Gripper and Test Platform

To turn the sensorized lattices into a gripper, we mount the
lattices as jaws of a belt-driven parallel gripper (introduced
in [19]) that is mounted on a robot arm (URS5, Universal
Robots). A servo (Dynamixel MX-28T, ROBOTIS) moves
the belt with two carriages on a shared linear rail. These car-
riages move in opposite directions, each holding a sensorized
lattice and its readout electronics (Fig. 1). The supplementary
video shows a rotating view of the gripper setup.

To prevent the tubing from interfering with the gripper’s
full range of motion, we adjust the signal and thermal tubing
lengths to 6, 7, 7, 8, 8, 9 inches. These lengths were chosen
as a trade-off between minimizing slack within the gripper
system and maximizing thermal compensation. To avoid
excess movement, we glue the thermal tubing to the signal
tubing with silicone adhesive (Sil-Poxy, Smooth-On).

IV. CHARACTERIZATION

The primary physical principle governing the air’s behav-
ior inside the channels is the ideal gas law pV = nRT.
Our method is based on pressure transducers that measure
changes in the pressure p. This section investigates how
changes in the volume V and amount of air n affect
the pressure readings p. Changes in 7' are assumed to be
negligible due to the thermal compensation line. We separate
this section into direct deformation of the lattice (change
in V') and transient effects like unintended deformation due
to the viscoelasticity of the material (change in V') and air
escaping due to diffusion and leakage (change in n).

A. Deformation of the Lattice

Manual tests show that directly compressing the channels
and bending the lattices lead to significant voltage readings
(see supplementary video). To understand the dominant
deformations that occur during manipulation, we grasp an
empty acrylic box with increasing strength. We show the
response of one representative sensor (second outermost
on left lattice) in Fig. 2. The different grasp strengths are
achieved by driving the servo to 7 pre-defined angles (from
103.7° to 130.1° in steps of 4.4°). For clarity, we filter the
data in this plot with a 20 Hz low-pass filter.

From this experiment, we note the overall trend that
the signal first goes down, plateaus at some fixed amount,
then almost restores back to the original voltage value. We
also note that as grasp strength increases, the plateau value
increases as well. We attribute the initial negative effect to
the lattices bending backwards from the grasped object’s
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Fig. 4: Sensor response to viscoelastic material behavior. The
lattice is held by a string (highlighted in green in the leftmost
plot), which is cut at around 2.6 seconds. An exponential fit
to the mean (not shown) has 7 = 3.4 s. Sensors are numbered
in ascending order from inside to outside.

reaction force. From [8] we know that sensors on the outer
surface during bending give negative values. Furthermore,
since we use the same box for each trial, the gripper is always
bent away by the same amount, explaining why all trials
go to the same initial negative value. Likewise, the plateau
increase corresponds well to compression. The amount the
lattice is compressed increases as we increase the grasp force,
which makes sense both intuitively and from [8]. We thus
conclude bending and compression are the primary effects as
the lattice deforms during a grasp and perform mechanical
characterizations on these effects.

1) Compression: To characterize the lattice under com-
pression, we use a universal testing machine (Instron, Illinois
Tool Works) with parallel plates (Fig. 3). We fix the lattice
with tape and compress to 1.7mm at a rate of 0.1 mm/s
for a total of 5 cycles, measuring across all sensors. The
resulting plots confirm the intuitive result that compression
leads to higher pressures and positive reading. Their very
similar response curves with difficult to read error bands
indicate a high level of repeatability. This is partially due to
our choice of tubing lengths that equalize the total volume
of the channels and tubing for all sensors. The discrepancy
between the loading and unloading curve can be attributed
to elastic hysteresis of the lattice material itself. This effect
is characteristic for elastomers and caused by energy dissi-
pation during deformation.

2) Bending: To characterize the lattice under bending,
we mount a 3D-printed fixture onto the Instron’s table to
hold the lattice in place. We then attach a braided nylon
string to the end of the lattice, fixing the other end of the
string to the movable upper grip fixture of the Instron. While
this string is elastic, it is two orders of magnitude stiffer
than the lattice, making its extension negligible compared
to the deformation of the lattice!. The string is pulled to

'We measure a string stiffness of kg = 25 nl]\z“ and a total stiffness of

the lattice-string system of k1 = 0.4% on the Instron. Modeling the total
system as two springs in series, the contribution of the string to the total
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Fig. 5: Leakage and diffusion over a 10-hour period after
pressurization, averaged across all sensors. The exponential
fit has 7 = 22 min.

an extension of 15mm at 0.5mm/s for a total of 5 cycles.
The resulting plots confirm our earlier intution that bending
leads to negative readings. Since the forces are orders of
magnitude lower than those for compression, the hysteretic
effects are less prominent but still present. They are also
minimized since the structure is deformed more than the
material itself. This structure-based movement also explains
why the bending affects the sensors unequally. The longest
sensor along the edge matches this bulk movement, while
the smaller sensor close to the pivot point is stretched more.

Overall, the high repeatability underscores the robustness
of the sensorization method. The very clean data requires
minimal filtering to reveal distinct mechanical behaviors.
This significantly eases our analysis of more complex ma-
nipulations in Sec. VL.

B. Transient Effects

In addition to the above deformation effects, we must
also consider transient effects on the sensor response. Time-
dependent effects like viscoelasticity, diffusion, and leakage
are present in any elastomer lattice with silicone tubing. The
goal is to get a timescale for these effects to ensure they do
not excessively affect our readings.

1) Viscoelastic Material Response: To evaluate the vis-
coelastic restoring response of the elastomeric lattice, we
record the lattice’s response to a sudden cut (Fig. 4). Similar
to the bending setup, we use a nylon string to pull on the
lattice when mounted in the gripper. We wait until the signal
plateaus and then cut the string sharply with scissors. The
lattice will slowly restore back to its original shape, allowing
us to measure its viscoelastic response. Fitting an exponential
to the mean of the sensor responses gives a time constant of
7 = 3.4s and an RMSE of 0.026 V. This lets us conclude
that the effect is on the scale of seconds and not negligible,
but can be mitigated by either re-normalizing the readings
or waiting for a few seconds between grasps.

2) Leakage and Diffusion: Since silicone is air permeable
and the tube fittings are not perfectly airtight, there will
inevitably be diffusion and leakage of air in our system.
While we rely on this to equilibriate the channels after
installation, this effect must be slow enough not to affect the
signals during grasping. To measure these effects, we record
the transducers’ response over a 10-hour period after we
pressurize the signal line. Since each of the transducers have
their own offset voltage (Sec. III-B), we align the moment



Fig. 6: Experimental setup for sensing different grasp loca-
tions. (Top Right) The grasp surface is divided into 6 regions.
(Bottom Right) 10 objects from the YCB object set [20].
(Left) Each object is held in place by hand in each region
and grasped with 3 different strengths.

when the pressures of different sensors cross the upper
bound of the sensor range and compute a mean and standard
deviation across all six sensors (Fig. 5). Our exponential fit
has an RMSE of 0.056V and a time constant of 7 = 1340s,
or 22 min. Since a grasp happens over the course of seconds,
we neglect this effect in our further analysis. We would need
to reconsider this assumption for tasks that require holding
an object for an extended period of time.

V. EXPERIMENTAL SETUP

In this section, we apply our system to grasping tasks and
discuss our evaluation setup for the sensors’ performance at
understanding a grasped object’s location and mass.

A. Sensing Different Grasp Locations

Localizing an object within the gripper is trivial for vision-
based tactile sensors but can be challenging for strain-
and force-sensing approaches due to their lower resolution
(Sec. II). To evaluate our gripper’s performance in this task,
we divide the inner surface of the lattice into 6 regions
(Fig. 6 top right). We manually hold an object in each of
the 6 regions and close the gripper with 3 different grasp
strengths. We repeat this for 10 different objects from the
YCB object set [20] (Fig. 6 bottom right). The supplementary
video shows the execution of the experiment for one of these
objects. Our goal is to see if we can tell the grasp location
purely from our sensor data alone.

B. Sensing Different Object Weights

Detecting an object’s weight is important for any gripper
as it affects slip and potential downstream use in dynamic
tasks. For the gripper to hold an object between its jaws,
the static Coulomb friction model puts a lower bound on the
normal force the gripper exerts on the object, dependent on
the mass of the object. Since Fig. 3 establishes a relationship
between sensor readings and the normal force, we seek a
relationship between the sensors’ readings and the mass
by finding the lowest possible normal force. To find this
relationship, we repeatedly grasp an acrylic box that weighs
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Fig. 7: Experimental setup for sensing different weights.
(Left) For each of 7 pre-defined grasp strengths, the gripper
makes 3 attempts to grasp a box filled with weights. A digital
scale confirms a successful lift-off. (Right) The experiment
is repeated with 15 weights from 0 to 1400 g.

52 g and load it with weights ranging from 0 to 1400g
(Fig. 7). We use the same hard-coded servo angles as in Fig. 2
to achieve different grasp strengths and measure the sensor
readings when exerting the minimal normal force required
for object lift-off. We use a USB-connected scale (Scout
SPX2201, OHAUS) to verify successful lift-off.

VI. EXPERIMENTAL RESULTS
A. In-Hand Localization

Fig. 8 shows the 2-dimensional t-distributed stochastic
neighbor embedding (t-SNE) of the 12-dimensional sensor
data collected during this experiment, colored by location,
using the default parameters from the scikit-learn Python li-
brary. Note that t-SNE is an unsupervised learning technique,
i.e., the location labels are not used during the computation.
The plot reveals neat clusters, which suggests that the data
is highly structured and easily separated into the 6 grasp
locations despite the approximate placement by hand, the 10
different objects, and the 3 different grasp strengths.

Indeed, a very simple neural network with one hidden
layer and 256 neurons (4,870 trainable parameters) trained
to classify the data into the 6 grasp locations achieves an
accuracy of 96.1% + 0.5% (averaged over 100 trials) after just
one epoch and less than 2 seconds of training. To evaluate
the generalization on an unseen object, we retrain the neural
network with all data except from the mustard bottle, which
is the object most different from all others in terms of shape
and grasp signature (see Fig. 1 for the grasp pose). The neural
network still achieves an accuracy of 77.1% +1.6%, even
though the mustard data is highly out of distribution. This
shows that despite having significantly lower-dimensional
data than vision-based tactile sensor, we are able to achieve
similar localization results with minimal effort.

B. Weight Estimation

Fig. 9 shows the results of the weight experiment. On
the left, we show the number of successful grasps out of 3
for each combination of grasp strength and mass. For each
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mass, we seek the minimum grasp strength required for 3/3
successful grasps (circled in red) and compute the average
sensor signal across the 3 grasps for each of the sensors. This
gives a voltage-mass relationship for each sensor that we
plot in gray on the right. Since we use pressure sensors with
different ranges for the two lattices, we first normalize the
voltages to enable comparison. We then rescale the voltages
with the ratio of the lengths of the signals lines used for
characterization (Sec. III-B) and those used for the gripper
(Sec. III-C) to enable comparison to the characterization
results. A linear least squares fit across all sensors reveals
a positive relationship between mass and sensor signals. We
construct a 95% confidence interval with the conventional
assumption that residuals are normally distributed.

We note that these results are in line with earlier observa-
tions. First, the top two lines that stand out in Fig. 9 right
correspond to the outermost sensors of the left and right
lattice. This is consistent with Fig. 3, where bending has the
least effect on the outermost sensor. More importantly, the
same trends seen in Fig. 2 apply here as well. The average
sensor value in Fig. 9 right starts out negative, which means
that for low weights, bending dominates. Since the lattice is
bent by the same amount for every mass (due to grasping
the same box), we conclude that the positive slope is solely
caused by higher compression. This implies that we can
take the slope of this line (voltage change due to increased
mass) and combine it with the slope of the compression
characterization plot (voltage change due to compression
force) to reason about compression force. Specifically, this
gives us an estimate of the minimally required compression
force to grasp each mass. For slopes of 0.125V /kg (Fig. 9
right) and 67.2N/V (Fig. 3 first row average), we get
8.37N/kg. In other words, for every kilogram of added
mass to the box, we need to increase the force by 8.37N
to ensure a secure grasp. Moreover, since this value is solely
determined by the gravitational acceleration and the friction
coefficient according to the static Coulomb friction model,
we can provide an estimate of the friction coefficient. Our
calculations gives us a friction coefficient of 0.59, a plausible
value for the lattice-box contact. This experiment shows
that the clean readings we get from our sensors enables

1400 0.3
1300
1200
1100
1000
900
800
700
600
500
400
300
200
100

0.2

Mass (g)

Normalized Voltage Change (V)

All Sensors
—— Linear Fit

0 200 400 600 800 1000
Mass (g)

1234567

Grasp Strength (—)
Fig. 9: Results of weight experiment. (Left) Number of
successful grasps out of 3 for each mass-grasp strength com-
bination. Red circle marks minimal grasp strength required
for 3/3 grasps for any given mass. (Right) Average sensor
response over the 3 grasps when exerting the minimal grasp
strength for each mass. Linear fit to mean shows positive
trend. Error band represents 95% confidence interval.

us to conduct rich experiments about grasping performance,
including extracting information like friction coefficient and
grasping force that are difficult to get for any robotic gripper.

VII. DISCUSSION

In this paper, we have explored the power of applying
the fluidic innervation technique to a gripper. Conceptually,
this method is very simple: 3D print empty channels within
a cubic lattice structure, use those lattices as the jaws of
a parallel jaw gripper, and measure their pressure. Despite
that simplicity, this sensorized gripper performs on par with
more intricate tactile sensors. We can provide feedback for
tasks such as weight detection and object localization, which
are traditionally addressed by vision-based sensors and dense
neural networks for interpretation. Through just 12 signals,
the method proposed here efficiently accomplishes a range
of tasks and provides novel insights for measuring friction
coefficients and grasping forces.

We plan to build on the versatility of fluidic innervation
by adding complexity to the lattice geometries. This includes
exploring the potential for programmable material properties
like spatially varying stiffness and creating denser channel
layouts for more comprehensive sensing. We hope that this
approach can serve as a foundational technique for better
identification of objects based on size, stiffness, and shape.
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