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Abstract— Machine learning-based approaches for soft robot
proprioception have recently gained popularity, in part due
to the difficulties in modeling the relationship between sensor
signals and robot shape. However, to date, there exists no
systematic analysis of the required design choices to set up a
machine learning pipeline for soft robot proprioception. Here,
we present the first study examining how design choices on
different levels of the machine learning pipeline affect the
performance of a neural network for predicting the state of a
soft robot. We address the most frequent questions researchers
face, such as how to choose the appropriate sensor and actuator
signals, process input and output data, deal with time series,
and pick the best neural network architecture. By testing our
hypotheses on data collected from two vastly different systems–
an electrically actuated robotic platform and a pneumatically
actuated soft trunk–we seek conclusions that may generalize
beyond one specific type of soft robot and hope to provide
insights for researchers to use machine learning for soft robot
proprioception.

I. INTRODUCTION

Soft robots are typically made out of materials that match
the stiffness of soft biological materials [1], [2]. The me-
chanical compliance of these soft materials can, among other
things, help simplify contact-rich manipulation tasks and
make human-robot interactions safer. These benefits, how-
ever, come at the cost of increased difficulty to model such
systems. Since these soft materials deform continuously and
undergo large deformations, continuum mechanics and finite
strain theory are required to fully model the state of the robot.
On the constitutive level, soft robotic building materials like
elastomers exhibit time-dependent effects such as strain-rate
dependency, stress relaxation, and creep stemming from their
viscoelastic behavior. Long-term and irreversible effects such
as polymer degradation, crack formation, and weakening
through cyclic loads (fatigue) further complicate modeling
the material behavior.

Despite continued efforts to analytically model soft sys-
tems, researchers have increasingly tried to bypass these
modeling difficulties by employing machine learning [3]–
[5]. A popular approach is using neural networks to learn a
mapping between signals from sensors and actuators to some
condensed representation of the robot state. This represen-
tation often involves some quantities of interest for down-
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Fig. 1: Our study is centered around questions pertaining
to four different aspects when employing machine learning-
based proprioception for soft robots: Selection of sensor and
actuator signals, input and output data processing, methods to
deal with the shifting data distribution, and choice of neural
network architecture.

stream control tasks, such as the position and orientation
of an end effector, parameters of a reduced-order kinematic
model, or keypoints that approximate the robot shape. Just as
proprioception refers to the awareness of one’s body position
in space, soft robot proprioception refers to the ability of a
soft robot to know its shape. Learning-based approaches to
soft robot proprioception have recently gained popularity. For
example, a vision-based approach with an internal camera
was combined with support vector machines to learn soft
robot pose [6]. Along a similar direction, convolutional
neural networks (CNNs) were adopted to achieve superior
capabilities to process high-dimensional visual data [7], [8],
further even with explicit reasoning in 3D space [9]. On the
other hand, authors employ temporal reasoning to capture the
time-variant properties [10]. More specifically, long short-
term memory networks (LSTMs) have gained popularity
due to their power of processing time-series data [11]–[13].
Furthermore, learning encoding schemes to map multiple
different sensors to a joint latent space has allowed for more
flexible inference [14]–[16]. Finally, uncertainty estimation
methods have been introduced to better and more robustly
perform multimodal sensing [17], [18].

While these works present solutions tailored to their own
setups, little research is conducted on how those learning-
based techniques can be transferred across platforms, thus
failing to provide generic guidelines for deploying a machine
learning-based pipeline for soft robot proprioception. Reflect-
ing upon the rapid progress fueled by large-scale datasets
and benchmarking in computer vision [19], and natural
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Platform Trunk
Type of Actuator Electric Pneumatic

No. Actuators 4 Servos 12 Pressure chambers
Incl. in Dataset Yes No
Type of Sensor Fluidic Piezoresistive

No. Sensors 12 Fluidic channels 12 Kirigami sensors
State Rigid body pose Params. of PCC model

State Dim. 3 pos. & 3 orient. 9 PCC params.
Length 377 min 95 min

Frequency 15 Hz 20 Hz
No. Samples 339,131 113,449

No. Takes 212 26
Min. Take Length 108 2,435
Avg. Take Length 1,600 4,363
Max. Take Length 3,685 6,805

TABLE I: Characteristics of the Platform and Trunk datasets
used in this study.

language processing [20], among others, we identify the
necessity for a systematic and large-scale study for soft robot
proprioception. Specifically, key challenges in learning-based
approaches to soft robotics include dealing with history-
dependent time series data, choosing an appropriate way to
represent and sample the data, and picking a suitable model
architecture and training configuration [3].

All of these points highlight clearly the need for a guide
for machine learning for soft robotics. We aim to address
four central questions in our study (see Fig. 1), namely what
kind of input signals to choose (sensors & actuators), how
to process and represent model in- and outputs, how to deal
with the distribution shift inherent to soft robot data, and
which model architecture to use. In line with the garbage
in, garbage out (GIGO) paradigm in machine learning, most
of our attention will thus be focused on data handling. We
hereby conduct the first large-scale study of such kind in soft
robotics and train 363 models in total across two publicly
available datasets. Overall, our work contributes

• the first large-scale machine learning study on soft
robotic datasets,

• a detailed analysis of the impact of different design
choices in the machine learning pipeline, and

• recommendations based on our findings that can be used
as starting point for learning-based approaches to soft
robot proprioception.

II. DATASETS

We base our study on two large publicly available soft
robotics datasets. The first one1, which we henceforth call
the Platform dataset, originates from a compliant, servo-
driven robotic platform that mimics a human wrist. Collected
over a period of 7 hours, this dataset is to the best of
our knowledge the largest of its kind. The second dataset2,
labeled henceforth as the Trunk dataset, is collected on a
pneumatically driven trunk actuator. The characteristics of
both datasets are summarized in Table I.

Both datasets are typical soft robotics datasets in the sense
that they both exhibit exponentially decaying behavior in the
short term due to viscoelasticity and drift in the long term

1http://people.csail.mit.edu/ltchin/sHSA_data/
2https://github.com/SensoSoRo

Fig. 2: (A) Setup of HSA-based robotic platform. (B) Sen-
sorization technique based on embedded, air-filled channels.
(C) Response of each sensor to uniaxial straining. (D)
Characteristic motions of the platform. Adapted from [13]
under a Creative Commons license (CC BY 4.0).

due to material wear. Furthermore, both datasets are recorded
in separate continuous recordings (i.e., takes) to capture
different actuation motifs and to deal with RAM limitations
of the recording setup. In almost any other aspect, however,
the systems differ fundamentally. Listed in Table I, these
differences pertain to the mode of actuation and sensing, state
representation, dimensionality, and length. Having datasets
from two very different systems is of utmost importance
to derive conclusions that generalize beyond one specific
type of actuator or sensor. Neither of the datasets includes
actuation scenarios involving contact, which allows our study
to solely focus on proprioception.

A. HSA-Based Robotic Platform

The first dataset used in this study stems from a four-
degree-of-freedom robotic platform made out of actuators
based on handed shearing auxetics (HSAs), as depicted in
Fig. 2. First introduced in [21], HSAs are metamaterials with
a structure that couples shearing with extension. Cylindrical
HSAs give rise to compliant linear actuators that extend when
twisted at their ends. Four HSAs arranged in a 2×2 array,
joined together at the top and driven by four servos at the
bottom, create a robotic platform that can rotate in all three
dimensions like a human wrist and additionally elongate and
contract (see Fig. 2D).

Embedded within the structure of the HSAs are empty, air-
filled channels that wrap around the full, half, and quarter
length of the HSA (Fig. 2B). All channels are sealed off at
one end and connected to differential pressure sensors at the
other. Deformations of the HSAs lead to pressure changes
in the closed volume that the pressure sensors translate
into analog voltage signals. Voltage responses of a linearly
extended HSA are depicted for each channel in Fig. 2C.

http://people.csail.mit.edu/ltchin/sHSA_data/
https://github.com/SensoSoRo


Fig. 3: (A) Pneumatic soft trunk in two actuated states. (B)
Four kirigami-inspired patterns of the piezoresistive strain
sensors in undeformed and deformed configuration. Adapted
from [12] under a Creative Commons license (CC BY 4.0).

The quantity of interest for this robot’s state is the rigid
body pose of the platform top. Orientation and position are
recorded by an external motion capture (mocap) system as
quaternion and location of the center of mass, respectively.

This dataset is uniquely suited to provide insights be-
cause the fluidic sensors introduce no time-dependent effects
compared to other soft sensing techniques. The sensors rely
on volume and pressure changes that follow the ideal gas
law, and themselves do not show time-delayed response,
drift, or hysteresis. All time-dependent effects in the data
come from the photopolymer resins comprising the HSAs.
This gives us the unique advantage that we can focus on
the learning challenges arising from the soft material itself.
Furthermore, HSA-based soft robots have gained popularity
recently, with new ways to fabricate [22], model [23]–[25],
and use them in practice [26]. Overall, this system is a robust
platform that provides us with a soft robotics data set of
unprecedented length to gain insights into learning-based soft
robot proprioception.

B. Pneumatic Soft Trunk

The second dataset is collected on a pneumatically actu-
ated soft robotic system inspired by the trunk of an elephant.
Depicted in Fig. 3, the trunk is made out of three serially
connected silicone segments. Each of the segments contains
four embedded fluidic elastomer actuators (FEAs), which
are connected via silicone tubing to a pressure manifold.
Inflating each FEA leads to the segment bending, which in
combination with the bending of other segments allows for
articulated dynamic motions and complex shapes (Fig. 3A).

Piezoresistive strain sensors, made from conductive sili-
cone with kirigami-inspired cutouts, are distributed on the

surface of the trunk. The four different kirigami patterns in
their initial and deformed configurations are depicted in Fig.
3B). A sensor of each pattern is placed directly over the FEA
of each segment, leading to a total of 12 resistance readings
for the whole trunk.

The trunk is modeled using a simplified kinematic de-
scription by approximating the shape of each trunk segment
with constant curvature. This so-called piece-wise constant
curvature (PCC) model allows for a state description of the
trunk using 9 parameters, 3 for each segment. The shape of
the trunk is recorded via a mocap system and converted into
the PCC parameters using the methods outlined in [12], [27].

FEAs, and more generally, fluidic actuators, are popular
choices for soft robotic actuation [1], [28], [29]. They can
generate large forces and achieve a wide range of motion,
enabling their use for a wide range of applications from
locomotion [30] to deep-sea manipulation [31]. Thus, se-
lecting the dataset for the pneumatic soft trunk in addition
to that for the HSA-based platform allows us to generalize
our conclusions to a large class of soft robotic systems.

III. METHODS

A. Problem Definition

Without loss of generality, we define the soft robot propri-
oception problem with the following regression formulation,

min
θ

E(x,y)∼p(x,y)[d(f(g(x); θ),y)]

where x is a snippet that contains sensor and/or actuator
signals and y is both the corresponding robot state and the
regression target. f(· ; θ) is a machine-learning model for
proprioception and g(·) is a data preprocessing function.
d(·, ·) is a distance measure used to estimate the error of
the prediction. p(x,y) is the sampling distribution for model
training. In this work, we conduct a systematic study to un-
veil challenging aspects under this formalism stemming from
the inherent nature of soft robots and provide a guideline
toward a machine learning solution.

B. Challenges

In this section, we aim to ground the unique challenges
of soft robot proprioception on the aforementioned machine
learning formulation. The major caveat of adopting machine
learning approaches to modeling soft robot proprioception
is the assumption of independent and identically distributed
(i.i.d.) data. Soft robots normally suffer from short-term
effects from time-dependent material responses, long-term
effects from material weakening, and sensor effects like time
delay, drifts, and hysteresis. These physical properties cause
a distributional shift within the dataset that violates the i.i.d.
assumption. Straightforwardly, this issue manifests itself in
the sampling distribution p(x,y). That is, given a very long
sequence of sensor signals timestamped by the lifetime of
the soft robot, the question remains how to define a single
instance of a data sample for model training. This issue
can potentially be alleviated by properly preprocessing the
sensor signals g(·). For example, the long-term variations in
the differential pressure readings in [13] could be partially



eliminated by subtracting a dynamic offset. Furthermore,
different working mechanisms of the models f(·; θ) (e.g., re-
currence, attention) may also exhibit different characteristics
upon learning with the non-static data distribution. Finally,
due to the fact that continuum bodies are considered to
possess infinite degrees of freedom, y is a reduced version of
the true state and can come in various representations, which
renders the choice of the distance measure d(·, ·) extremely
important.

C. Baseline and Evaluation

A grid search over all possible combinations of config-
urations is infeasible due to the prohibitive computational
effort. Probabilistic methods like Bayesian optimization or
evolutionary strategies can be efficient in practice but make
comparing different choices and deriving conclusions within
each experiment difficult. We thus introduce a baseline
configuration with reasonable performance from which we
vary one or two parameters within an experiment.

The baseline configuration for the Platform dataset is taken
from [13]. The inputs, the signals from the 12 sensors,
are normalized by subtracting the initial voltage value of
each take from the whole take. For the model outputs, the
orientation is represented as a quaternion. The last 15% of
the takes are chosen as the test set. A window of length 64
is slid over each of the remaining takes with a stride of 20
to simultaneously extract shorter sequences and augment the
data. Out of these length-64 sequences, 10% are randomly
split off as a validation set. The model architecture is a three-
layered LSTM that has 200 cell states per layer.

For the baseline configuration for the Trunk dataset, we
choose the sensor signals as model input and predict as
output the PCC parameters. The last 3 of the 26 takes act
as the test set. The model architecture and the method to
extract shorter sequences and split off the validation set are
the same as in the Platform dataset.

The performance of each configuration is evaluated on the
test set. The metrics are taken from each of the original
papers. For the Platform dataset, these are the mean abso-
lute position error and the mean absolute orientation error.
The former measures the Euclidean distance in millimeters
between the predicted and the ground truth center of mass
location. The latter measures the angle in degrees by which
the predicted and the ground truth orientations differ. For
the Trunk dataset, the metric is the RMSE of the PCC
parameters.

D. Model Training

The Adam optimizer with default parameters is used to
optimize the MSE loss. The learning rate starts out at 0.001
and is halved every time the validation loss does not improve
over a period of 20 epochs. The models are trained with batch
size 32 for 100 epochs for the Platform data, and for 500
epochs for the Trunk data, after which only the model with
the lowest validation loss is retained. For the Platform data,
an additional factor of 100 balances out the contributions
to the loss of the orientation predictions with those of the

position predictions. Each configuration is trained for three
trials for a performance average and a variance estimate.

IV. EXPERIMENTAL SETUP

We carry out a set of four experiments to analyze the
impact of different design choices on performance. Because
of the general importance of high-quality data for machine
learning (i.e., the GIGO paradigm), the first two experiments
concern the selection, processing, and representation of the
data. As the types of input and output data vary from system
to system, these first two experiments do not generalize one-
to-one for all soft robotic systems. However, questions such
as whether to include actuator signals in the input or how
to represent orientations apply to many proprioception tasks.
The third experiment is concerned with the data distribution
shifting over time as is common in soft robotic datasets.
One aspect is the correct selection of the test set, which has
implications on whether the test error is a good predictor
of real-world performance. The other aspect is generating
time series with appropriate lengths to capture the short-term
dynamics of the robot. As soft robots are mostly built from
viscoelastic materials that show time-dependent behavior, it
seems natural to choose a neural network type that carries
history information. The LSTM is a popular choice in the
community. In the fourth experiment, we examine whether
this choice is justified and probe alternatives. In a final
experiment, we check whether a greedy selection of the best
configuration from each individual experiment lead to the
best overall result.

A. Choosing Sensor and Actuator Signals

1) Sensor Selection: The Platform dataset provides a
readily available classification of the sensors into full, half,
and quarter sensors, which generate the strongest, intermedi-
ate, and weakest signals, respectively (see Fig. 2B and C). To
inform future design choices, we test whether the full sen-
sors, routed along the whole length of the actuator, provide
the most information about the deformation. Analogously,
we probe the usefulness of the half and quarter sensors. We
observe the signals of one half and one quarter sensor to be
visibly different from the signals of the other sensors of the
same type. Thus, this raises the question of whether removing
these faulty sensors from the inputs improves performance.

2) Actuator Inputs: We address the question of whether
including the actuator inputs helps proprioception. Some
authors explicitly choose to omit the actuator data from the
inputs to separate sensor dynamics from robot dynamics [7],
[12], [13]. We evaluate the performance sacrifice of this
choice by first including the servo positions of the Platform
dataset to the inputs, followed by additions of servo velocities
and loads. Finally, we omit all sensor data and evaluate the
performance when the actuator signals are the only inputs.

In terms of signal strength, the sensors of the Trunk dataset
are not as easily classified into separate categories. The
actuator inputs are not included in the Trunk dataset, and
it is difficult to interpret any sensor as potentially faulty, so
this experiment is only carried out with the Platform dataset.



Sensors Actuators Error
Wk Int Str DF All Position Position Angle

6.88±.08 8.52±.21
4.20±.12 4.93±.15
3.59±.06 4.15±.05
3.85±.10 4.20±.06
3.64±.07 4.03±.10
2.51±.05 1.33±.07
2.16±.12 1.24±.07
2.63±.05 1.39±.02
2.55±.05 1.41±.07

TABLE II: Prediction errors with the Platform dataset for
different combinations of sensor and actuator signals. Wk:
weak, Int: intermediate, Str: strong, DF: drop faulty.

B. Processing Input and Output Data

1) Input Normalization: Due to compliance of the soft
robots and long-term drift in the sensor signals, the initial
configuration at the beginning of each recording is different
even for the same actuator signals. This naturally raises the
question of whether the sensor signals should also be reset
at the beginning of each recording. This experiment tests
for both datasets whether using sensor signals relative to the
beginning of each take improves performance. Even though
not specific to soft robot data, we also test mean- and median-
filtering the inputs. To maintain real-time capabilities, these
filters need to be causal. Even though outliers may have a
negative impact on the training, the time delay introduced
by these causal filters may introduce problems on their own.

2) Orientation Representation: An often encountered
problem when dealing with pose is finding the appropriate
representation for orientation since each has its downsides.
Euler angles suffer from gimbal locks and for quaternions,
symmetries and the proper distance metric need to be
accounted for. Rotation matrices are verbose and contain
many dependent entries, and rotation vectors (aka. axis–angle
representation) are difficult to compose. Keypoints require
an additional postprocessing step to compute orientation,
but are easily obtainable, for example from tracking marker
locations.

C. Dealing with the Data Distribution

1) Test Set: Defining proper validation and test sets is
central in a machine learning pipeline since each of these
has its own important role. The validation set is used for
evaluating a particular model when tuning hyperparameters,
for judging training convergence and degree of overfitting,
and as a metric for regularization. The test set, on the other
hand, evaluates the performance of the already-trained, final
model before deployment. Conventional wisdom suggests
stowing away the test set right after splitting it off from
the data. To get an unbiased estimate of the final model
performance, the test set can neither be used for hyperpa-
rameter tuning nor model selection and definitely not for
training. The question remains, however, how and where the
test set is best chosen. Considering the long-term drift present
in soft robotics datasets and the accompanying distribution
shift, choosing the test sets randomly from all over the

Dataset Signal Filtering Error
Position Angle

Platform

Absolute - 4.85±.06 6.09±.24

Relative
- 3.85±.10 4.20±.06

Mean 5.01±.13 6.37±.25
Median 4.93±.12 6.28±.21

Trunk Absolute
- 1.48±.04

Mean 1.58±.08
Median 1.50±.04

Relative - 1.52±.05

TABLE III: Performance for input processing methods.

Output
Repr. Quaternion Rotation

Matrix
Rotation
Vector

Euler
Angles Keypoints

Pos. Err. 3.85±.10 3.82±.05 3.90±.08 3.88±.15 3.80±.11
Ang. Err. 4.20±.06 4.20±.05 4.20±.22 4.08±.23 3.74±.03

TABLE IV: Prediction errors with the Platform dataset for
different representations of rigid body orientation.

dataset, as is common, may lead to a distorted estimate of
the model performance in practice. Starting with choosing
all test takes randomly, in the first part of this experiment,
we progressively replace them with test takes from the end
(0%, 20%, 40%, 60%, 80%, 100% for the Platform dataset,
and 0%, 33%, 67%, 100% for the Trunk dataset).

2) Sequence Length & Overlap: Both datasets come or-
ganized in takes with different lengths. To batch the data for
training, however, the takes need to be trimmed to sequences
of the same length. This experiment examines which of the
sequence lengths from 64, 128, 256, 512, 1024, 2048, to
the largest sequence length (3,685 for the Platform, 6,805
for Trunk) is the most appropriate. Takes that are too short
are zero-padded. Takes that are too long are zero-padded
into a multiple of the desired sequence length and chopped.
A common technique to extract overlapping sequences is
sliding a window with a stride smaller than the window
length over the take. For each of the sequence lengths 64,
128, 256, 512, we test overlap ratios of 0%, 33%, and 67%.

D. Choosing the Neural Network Architecture

1) Model Architecture: Here, we investigate the per-
formance of popular neural network architectures on our
datasets. Besides LSTMs and the closely related gated re-
current units (GRU), we employ vanilla feedforward neural
networks (aka. multilayer perceptrons, MLP), transformers,
closed-form continuous-depth networks (CfC) from [32], and
1D CNNs. Since the MLPs are the only class of networks
without access to history information, we also train MLPs
with the globally elapsed time as additional input, measured
from the beginning of the first take (MLP-t). This explicit
time input is intended to measure the long-term drift. Each of
the models has as its last layers a fully-connected layer with
ReLU activation, a dropout layer with probability 0.2, and
a final fully-connected layer to achieve the desired output
size. The MLPs have 8 hidden layers with size 256 and the
CNNs have 4 layers with size 256 and kernel size 3. LSTMs,
GRUs, CfCs, and transformers all have 3 hidden layers with
size 200. Similar sizes are chosen to facilitate comparison
between different architectures.

2) Data Efficiency: Since data is scarce and expensive to
collect for many soft robots, we leverage the size of our two
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Fig. 4: Relative underestimation of the test error as function
of the percentage of test data chosen from end versus
randomly. Shaded areas denote 95% confidence interval.

available datasets and investigate the data efficiency of all
model architectures. We reduce the size of the training data
of both datasets to 1/4-th, 1/16-th, and 1/64-th of the original
size and compare the performance to the models trained on
all the available training data.

E. Best Configuration

Finally, we evaluate for both datasets whether greedily
following the recommendations from each of the experiments
leads to the best result overall. Even though we run numerous
variations across these four experiments, we only explore a
small fraction of all combinatorially possible configurations
of design choices. Evaluating the performance of the best
configuration lets us judge whether the conclusions derived
from each of the experiments are valid on their own or
depend on the outcome of other experiments.

V. RESULTS

A. Sensor & Actuator Signals

The results are given in Table II. Consistent with expec-
tations, going from weak to strong sensors and omitting the
faulty sensors each lead to a performance increase. However,
adding actuator signals to the input leads to a larger boost in
performance. Remarkably, using only the four servo positions
as inputs leads to lower errors than any combination that only
uses sensors. This suggests that for this dataset, the neural
network can learn the disturbance-free forward kinematics.
However, with external forces present or a higher degree
of material degradation, this kind of one-to-one mapping
between actuator signals and pose is not possible anymore,
and sensors become necessary for proprioception.

B. Model I/O

The results of using different input preprocessing schemes
are shown in Table III. For the Platform dataset, using
relative instead of absolute inputs leads to lower errors.
Relative inputs provide a more accurate representation of the
pressure change in the sensors and make the signals more
comparable across takes. A similar performance improve-
ment when using relative instead of absolute inputs cannot be
observed with the Trunk dataset. Why filtering the data leads
to a significant drop in performance can be explained by an
observation first reported in [13]. Upon closer inspection of
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Fig. 5: Relative prediction error for different sequence
lengths (left) and different overlapping ratios (right). Shaded
areas denote 95% confidence interval.

the test takes with large prediction errors, we observe that
the prediction locks in at a wrong value and stays largely
constant while the platform is held in place. The neural
network, however, always predicts the timing of the transition
between different poses very exactly. The causal filters blur
the timing of this transition and introduce a time delay.

As for picking the most appropriate representation for
orientation, Table IV does not paint a clear picture. As
expected, the position predictions are very similar. Within the
representations that describe a real orientation, the specific
choice seems to matter less. Orientation predictions of rota-
tion vectors and Euler angles carry higher uncertainty. The
four keypoints improve the orientation predictions. However,
this very likely depends on the size of the platform and
the location of the keypoints. One can imagine that for a
very large platform, keypoints placed close to the center of
mass would lead to larger orientation prediction errors than
keypoints placed far away from the center of mass, even
when the keypoint location predictions have the same error.

C. Data Distribution

The prediction error as we increase the amount of test
data chosen from the end of the dataset is depicted in Fig.
4. As a general trend, selecting more test data randomly
than from the end leads to lower errors and thus seems
to improve performance. In this experiment, however, lower
errors are not preferred. The test set is supposed to provide a
performance estimate of the deployed system. Since the i.i.d.
assumption does not hold true and a significant distributional
shift is present in our data, the test data must be chosen from
the end. In fact, the more test data is selected from all over
the dataset, the more the test error overestimates the model
performance in deployment.

The results for testing different sequence lengths and
overlap ratios are depicted in Fig. 5. The right plot shows
an average over all sequence lengths. The general trends
indicate that decreasing sequence length and increasing over-
lap ratio benefit model performance. Upon closer inspection,
however, a sequence length of 128 outperforms 64 for the
Platform dataset, and an overlapping ratio of 33% leads to
lower errors than 67% for the Trunk dataset.
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D. Neural Network Architecture

The performance of the different models is shown in Fig.
6. LSTMs and GRUs achieve the two lowest errors in both
datasets. Since GRUs significantly outperform LSTMs on the
Platform dataset, they prove themselves worth consideration
over their more popular counterparts. As expected, MLPs
perform worse than GRUs and LSTMs because they do
not have access to history information. Adding the globally
elapsed time as input does not improve the results as hoped.
Initially intended as a measure for the long-term drift, it fails
to capture the short-term dynamics of the soft robot bodies.

The results of the model performance as a function of
the dataset size are shown in Fig. 7. All models trained
on the Platform dataset largely retain their performance
even when only 1/4 of the dataset is used. The error only
begins to increase significantly when reducing the dataset
by another 75% to 1/16 of the original size. This suggests
that there are diminishing returns when collecting more data.
The models trained on the Trunk dataset, however, already
show a significant performance decline when using 1/4 of
the data. Interestingly, the Platform dataset is almost exactly
four times as large as the Trunk dataset in terms of recording
length (see Table I). Starting from first place when trained
on the full Platform dataset, GRU performance drops to last
place with 1/64 of the dataset. Viewed from the other side,
GRUs seem to benefit the most when collecting more data.

2 4 6 8 10
Error

Platform
 (Position)

Platform
 (Angle)

Trunk
Others
Best w/o Actuators
Best

Fig. 8: Swarm plot showcasing all the models trained during
this study. Trials associated with the best configurations are
highlighted in red. Best configurations without using actuator
data (Platform dataset) are highlighted in orange.

E. Best Configuration

Summarizing the previous experiments, the best config-
uration for the Platform dataset involves dropping faulty
sensors from the inputs but including the actuator position
(Table II), using relative inputs (Table III), representing the
orientation as keypoints (Table IV), and extracting length-
128 sequences with 67% overlap to train a GRU (Fig. 7).
The best configuration for the Trunk dataset uses absolute
sensor signals as inputs (Table III) and extracts length-256
sequences with 33% overlap to train an LSTM (Fig. 7).

With platform position errors of 1.93 ± 0.09 mm, angle
errors of 0.94 ± 0.06°, and trunk RMSEs of 1.32 ± 0.03 mm,
the best configurations not only outperform the baselines but
show the lowest average errors among all models that were
trained as part of this study (see Fig. 8). As apparent from
the results of the first experiment (see Table II), including
the actuator inputs from the Platform dataset is very likely
the most important contributor to the performance gain. In
fact, the only 12 other models trained with actuator inputs
(4 configurations from the 1st experiment with 3 trials each)
are clustered tightly in the vicinity of the best configurations.
To learn how much the other factors contribute to the
performance increase, we re-ran the best configuration for
the Platform dataset without actuator inputs and still achieved
the best results among all models that were not trained with
actuator inputs (orange dots in Fig. 8).



VI. CONCLUSIONS

In this work, we have leveraged two large soft robotics
datasets to derive best practice guidelines for using a machine
learning-based approach to soft robot proprioception. We
have trained 363 models to derive insights in four key areas
of a machine learning pipeline. In terms of selecting the
appropriate inputs, we have found that adding the actuator
signals as inputs to the neural network significantly improves
the predictions. Taking a closer look at the sensor data is
also worth it since dropping the signals from faulty sensors
boosts performance. We have found that filtering the data
does not lead to improvements, possibly because smoothing
effects are canceled out by the introduction of a time delay.
Also, we have found tracking keypoints as an alternative
way to represent orientations to be worth consideration. In
terms of dealing with the distribution shift over time, we
have found that taking the test data from anywhere except
for the end will underestimate the error of the performance
in deployment. To deal with data recordings of different
lengths, we have found that extracting shorter sequences with
overlap leads to the best results. Even though LSTMs seem
the default choice for predicting time series, we have found
that GRUs perform equally well for our datasets. Finally,
when combining all the insights derived from each of the
experiments, we have managed to obtain a configuration
that not only outperforms our baselines, but every single
configuration that was examined as part of this study.
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