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Abstract— Although bin packing has been a key benchmark
task for robotic manipulation, the community has mainly
focused on the placement of rigid rectilinear objects within the
container. We address this by presenting a soft robotic hand that
combines vision, motor-based proprioception, and soft tactile
sensors to identify, sort, and pack a stream of unknown objects.
This multimodal sensing approach enables our soft robotic
manipulator to estimate an object’s size and stiffness, allowing
us to translate the ill-defined human conception of a “well-
packed container” into attainable metrics. We demonstrate
the effectiveness of this soft robotic system through a realistic
grocery packing scenario, where objects of arbitrary shape, size,
and stiffness move down a conveyor belt and must be placed
intelligently to avoid crushing delicate objects. Combining
tactile and proprioceptive feedback with external vision resulted
in a significant reduction in item-damaging packing maneuvers
compared to a sensorless baseline (9× fewer) and vision-only
(4.5× fewer) techniques, successfully demonstrating how the
integration of multiple sensing modalities within a soft robotic
system can address complex manipulation applications.

I. INTRODUCTION

Picking items from clutter and placing them into ordered
bins has been an important benchmark for the broader
robotic manipulation community, as exemplified by the
Amazon Picking/Robotics Challenge [1]. Current solutions
have largely focused on vision-based segmentation for rigid
grippers grasping rigid rectilinear objects [2]–[6]. While ef-
fective, these approaches require significant pre-computation,
limiting their utility for “online applications,” where input is
processed serially rather than upfront. Online applications
describe many realistic packing scenarios such as loading
a dishwasher or packing for a move. The order in which
objects arrive and their material properties are unknown and
must be dynamically determined.

Soft grippers offer a potential solution for online bin
packing as their compliance makes them robust to changes in
objects’ stiffness, shapes, and placement. This enables them
to grasp objects with arbitrary material properties without
the models or precise location information that their rigid
counterparts would require [7]–[9]. However, sensorizing
soft robotic grippers has remained challenging, especially
when multiple sensor modalities are needed. A soft gripper’s
deformability makes it difficult to accurately place tactile
sensors and localize forces spatially along the gripper [10],
[11]. Despite current efforts to create proprioceptive soft
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Fig. 1. Soft robotic manipulation for grocery packing system setup.
Our system combines RGB-D cameras, closed-loop control servo motors,
and custom soft tactile sensors to determine an optimal packing order for
unknown grocery items in a safe, dynamic and online fashion.

grippers through using vision for tactile and force sens-
ing [12]–[14] or incorporating rigid sensing elements within
soft systems [15], [16], there has been relatively little explo-
ration into applying soft robots that use contemporary sensor
fusion techniques to complex online applications.

We address this gap by creating an end-to-end online
bin packing system that uses multimodal sensing to grasp
unknown objects and safely pack them (Fig. 1). Our system
combines RGB-D cameras with soft pressure-based tactile
sensors to provide the sensory feedback needed to make
appropriate packing decisions for a soft gripper. This gripper,
previously introduced in [17], combines parallel grasping
and soft-finger grasping in a single servomotor-driven pack-
age with proprioceptive grasping feedback. These different
sensing modalities complement one another to ensure an
accurate and timely understanding of the properties of an
object’s material, combining the global scale of vision with
the localized scale of tactile sensing.

We demonstrate the power of this soft robotic system by
comparing its performance against sensorless and vision-only
systems in a grocery packing scenario. Grocery packing is a
strong case study for online packing as groceries vary widely
in shape and weight, and these characteristics may not be
fully captured by pre-built models [18]. To pack groceries
well, a robotic system must be able to handle delicate objects
carefully and ensure that groceries at the bottom of the bin
are not crushed by groceries packed above them. Initial work
on food handling with a soft multimodal approach has shown
success [19] but still required significant precomputation (56
hours to detect 5 classes of objects).
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In our system, we write an online algorithm for bin
packing unknown objects. The robot is able to detect the size
and stiffness of an object in real time and determine a place-
ment sequence that avoids crushing objects. By integrating
vision and tactile sensing within a single soft gripper system,
our end-to-end solution performs 9× fewer item-damaging
maneuvers than the sensorless baseline and 4.5× fewer than
using vision alone.

In summary, we make the following contributions:
1) an integrated physical soft grasping platform that

merges vision, motor-based proprioception and
pressure-based tactile sensing in a soft grasping
system.

2) an online packing algorithm that takes in multiple
sensor inputs to create a “well-packed” container that
matches human expectations.

3) physical experiments with our multimodal approach
and comparisons against traditional blind and vision
packing methods in a realistic grocery packing scenario
with irregular objects.

II. RELATED WORK

Current research on packing has focused on minimizing
unoccupied volume or runtime for a given number of rigid
objects [6], [20]. These works often rely on knowing the
packed objects’ and bin’s geometries beforehand, with many
requiring significant offboard pre-processing [5], [21], [22].
Indeed, current solvers may reach intractable run times when
instructed to pack as few as six objects [23]. For online
applications, where objects are not known beforehand and
may be deformable or fragile, these methods are insufficient.

Sensor fusion may provide an effective way to achieve
online packing. In particular, visual and tactile sensors pro-
vide complementary ranges of data, focusing on global and
localized scales respectively. When these different modalities
are combined, significant manipulation milestones can be
accomplished, such as improving grasp reliability [24]–[26],
task accuracy [27], [28], and scene/object understanding [29].
With few exceptions [30], the majority of previous work on
sensor fusion for robot manipulation relies upon machine
learning for at least one portion of the pipeline [25], [26],
[31]. While powerful for learning various grasping policies,
these methods require detailed prior knowledge of the items,
such as CAD models [32], extensive dataset building [25] or
built learned representations [26], which again makes these
methods ill-suited for online applications.

Although the sensorization of soft grippers is an active
area of research, there has been relatively little overlap with
contemporary sensor fusion techniques. For example, the
multimodal approach in [19] solely uses its tactile sensors
to determine grasp pose rather than combine the tactile
information with visual information. One major challenge
is the soft gripper’s deformability, making it difficult to
accurately place tactile sensors and localize forces spatially
along the gripper. Significant focus has thus been placed
on obtaining accurate proprioception as an intermediate step
before more integrated sensor fusion [10]. The most popular

Fig. 2. A flowchart of our grocery packing algorithm with multimodal
sensing.

combination of sensor modalities is in the use of vision
for tactile sensing, where the high resolution of a camera
or time-of-flight sensor is used to track the deformation of
a soft surface to get tactile information [12], [13]. Others
incorporate rigid elements to provide proprioception within
their soft structure, occasionally supplementing this with
further tactile sensors [15], [16]. We build on this approach
and our previous work [33] by choosing a strategy where
we incorporate proprioceptive feedback from the rigid servo
motors that drive our soft gripper with the soft tactile sensors
and external vision system for our multimodal approach.

III. PROBLEM STATEMENT AND APPROACH

In this project, we aim to build a robot system that can
pack a bin in an “online” fashion, where objects are unknown
and must be processed one at a time rather than all at once.
The goal is for this robotic system to avoid placing “delicate”
objects under non-delicate objects. In other words, we seek
to avoid crushing objects under the weight of future objects.
This is consistent with the qualitative human intuition for
what “good” bin packing would look like. We define four
areas to our system:

1) the robot, which has a gripper that can grasp one object
at a time;



Fig. 3. Calibration set. These 25 items were used to characterize the vision
system and determine the priority packing heuristic. The objects that are
considered “delicate” are the apple, clementine, grapes, mozzarella, peach,
pear, and the pound cake.

2) the conveyor belt, where objects are delivered to the
robot sequentially;

3) the bin, where objects are to be packed;
4) a buffer zone, where objects may be placed temporarily

before being packed.
Our approach to packing is summarized in Fig. 2. Briefly,

the conveyor belt is monitored for new objects. If an object is
detected on the belt, it is grasped and analyzed by the robot’s
internal and external sensors. If this item is not delicate, it
will be packed directly in the bin. If the item is delicate, it
will be placed in a buffer in the hopes of being packed after
less delicate objects coming down the line. When there are
no other objects to pack on the belt, the robot will then pack
things from the buffer into the bin.

The following sections will fill in the details of this frame-
work. Sec. IV will characterize the hardware components that
provide the sensing and grasping information, Sec. V will de-
scribe how these components are integrated algorithmically,
and Sec. VI will give the experimental results of how our
packing approach fares in a grocery packing scenario.

IV. HARDWARE ARCHITECTURE AND
CHARACTERIZATION

In our described approach, we require a system that can
(a) visibly locate objects, (b) grasp these objects, and (c)
gain tactile information about the objects. We achieve these
goals through three major hardware components: (1) two
external RGB-D cameras, (2) a previously introduced soft
gripper [17] with added proprioceptive motor feedback, and
(3) new pressure-based tactile sensors attached to the fingers
of this gripper. These components are all integrated on a
robot arm in a packing scenario for evaluation.

A. External Vision

To sense visually, our system uses two RGB-D cameras:
an ASUS Xtion 2 to detect the locations and sizes of objects
on the conveyor belt and an ASUS Xtion PRO LIVE to
determine the best packing location in the bin.

To locate the objects on the conveyor belt, we perform
color segmentation via OpenCV to threshold out the con-
veyor belt’s uniform black color. Once the item has been

Fig. 4. Log-log plot comparing the measured area of an object viewed
from the top against the vision system’s calculation of the object’s area.

segmented, we fit a bounding box to the object’s contours to
estimate its size. Given the average time to plan and execute
robot trajectories from the neutral position to the conveyor
belt and the speed of the conveyor belt, we determine a
meeting waypoint for object and robot, as well as the time
the object will reach that point. We then use MoveIt! with
RRT-Connect for motion planning of the robot arm to move
and grasp the object at that point.

To evaluate how accurate the external vision system is in
its size estimation, we compare the camera’s area measure-
ment of the 25 items in Fig. 3 against a ground truth manual
measurement of the object. Specifically, we use the camera
to compute the bounding box area of each object. We see a
good match between the actual and estimated size of each
test object, with a tight correlation (r = 0.987) to the line
y = x (Fig. 4).

Once an object is grasped, the vision system then identifies
a favorable packing location. First, the vision system locates
the packing box in the RGB image via color segmentation.
The mask of the bin is then applied to the registered depth
image, leaving only the region of packing interest. Object
dimensions recorded previously during the detection and
grasping tasks are translated into pixel coordinates. A kernel
of ones with dimensions of these translated length and width
values is convolved with the depth image of the bin to create
a heatmap of packing locations. We perform this operation
twice: once with the kernel reflecting the current object
orientation, and once with the kernel rotated 90 degrees.
The final packing orientation is determined by the highest
score of the two heatmaps. Although this approach is not
the most optimal, it bypasses the computational intractability
and training requirements found in contemporary algorithms
[23], [34], allowing us to perform online packing without
significant pre-computation.



Fig. 5. (A) Soft finger assembly with hexagonal tactile sensors. (B) Close
up on the tactile sensor array. (C) Cross sectional render of the tactile
sensors.

B. Proprioceptive Gripper

To grasp objects with proprioceptive feedback, we upgrade
the soft gripper introduced in [17] with new servomotors
for closed loop feedback. To summarize briefly, the original
gripper offered “multiplexed” manipulation, enabling us to
grasp objects using parallel jaw grasps, soft finger grasps
or a combination of the two. This combination allows us
to pick up objects that could not be picked up by single
grasping modes alone. This is important in grocery packing
applications, where objects may not be of uniform shape.

For this work, we upgraded the servo motors from HiTec
HS-5585MH servos to Dynamixel MX-28T servos. These
Dynamixel servos provide feedback on the servo’s position,
speed, and estimated load, allowing us to detect when an
object is grasped and automatically combine grasping modes.
We also print the soft fingers out of a flexible polyurethane
(FPU 50, Carbon Inc.) rather than laser cutting them [35].

For each grasp, the servo drives the parallel jaws closed
with a constant velocity. This servo will halt its motion
when either the maximum travel distance is reached or a
sharp spike in the estimated load is measured, indicating
object contact. Next, the servos driving the soft fingers will
move inwards, creating an enclosing grasp around the object.
This combination of parallel jaw and soft grasping creates a
stronger and more conforming grasp to the object.

To release an object, the jaw servo opens outwards with
a constant velocity until it measures zero estimated load,
indicating no more contact with the object. This controlled
release is necessary to ensure that the gripper does not open
too wide when releasing objects within the packing bin and
bump the wide fingers against the bin’s edge.

C. Tactile Sensing

To provide tactile information to our grasps, we use our
previous work on printing internal air-based sensors [36] to
manufacture arrays of tactile sensors. In our prior work, we

Fig. 6. (Top) Sensor response of the leftmost, center and rightmost tactile
sensors for weights ranging from 10 g to 200 g in 10 g increments. Error bars
represent standard deviation across three trials. (Bottom) The total pressure
measured by the sensors as a percentage of the expected amount of pressure
from the given amount of weight placed on top of the sensors.

printed air channels within a structure. When the structure
was pressed or bent, we could measure the resulting change
in pressure of the internal air channel to get a sense of
the contact forces on the surface. While that previous paper
demonstrated the potential of that technique, no real-world
applications with contact were explored.

We apply the sensorization technique to create external
tactile sensors for measuring grasping forces (Fig. 5A,B).
Specifically, we print hollow, thin-walled hexagonal prisms
out of an elastomeric polyurethane (EPU 40, Carbon Inc.).
Each hexagon serves as a single “bubble” sensor that will
react to a grasped object. These prisms rest on a thick
panel that also serves as the end cap for the gripper’s soft
fingers. Empty fluidic channels run from the inner cavity
of each sensor to an outer edge for measurement access.
These channels were designed to have equal lengths, so each
channel should have a similar response to a given force
(Fig. 5C). Excess resin is removed from the printed part
by aspirating with vacuum to create open channels. The
resin exit holes are then sealed with Gorilla Super Glue
Gel. Silicone tubing is used to connect the closed volumes
to differential pressure transducers (HSCDRRN160MDAA5,
Honeywell) which are read through a 24-bit analog digital



converter (ARD-LTC2499, Iowa Scaled Engineering).
To characterize the soft tactile sensors’ accuracy in mea-

suring grasping forces, we conducted a series of experiments
where weights were placed on top of the hexagonal sensors
as they rested on a table. It is difficult to measure grasp-
ing forces in situ, so this proxy measurement was chosen
instead. The weights placed ranged from 10 g to 200 g in
10 g increments. This overlaps with the range of previously
measured gripper forces from [17], which reported grasping
force estimates of 0.75 N to 2 N. Three trials were conducted
for each weight class.

To equally distribute the weights’ effect across the sensors,
a sheet of cardboard (0.7 g) was placed over all 7 hexagonal
bubbles. A measurement was taken with no weights on the
cardboard to use as a normalization across all other data
points. Due to space constraints to mount the electronics to
the gripper, the sensor performance could only be recorded
for 3 hexagonal bubbles. We thus chose to measure the
leftmost hexagon, the center hexagon, and the rightmost
hexagon (Fig. 6-top).

To compensate for this incomplete measurement, we com-
pared the measured pressure change in the channels against
the total weight placed on the sensor channels (Fig. 6-
bottom). For example, in an ideal world, if 10 g were placed
across all 7 sensors, each of which has a surface area of
42.4 mm2, the sensors would report 1

7
0.01kg·9.81m/s2

42.4·10−6m2 = 331Pa
in total. Again, in an ideal world, this pressure would be
distributed equally across the 3 sensors being measured, so
the 3 sensors would, in total, measure 3

7 = 43% of the total
pressure. In real life, however, the entire sensor is built out
of an elastomer and not all of the force of the weight will
be applied directly to the sensors. We notably see a large
bias towards the middle sensor as that is where most of
the weight was loaded. Across our 3 measured sensors, we
measure a total of 136 Pa for a weight of 10g. This is about
41% of the expected total pressure, which is very close to
the expected 43%. We report the equivalent percentage for
all of the weight classes.

Subsequent measurements do not match nearly as well as
the original 10 gram measurement. This implies that as more
weight is loaded onto the hexagons, the entire elastomeric
structure itself takes on the weight rather than the individual
hexagons. Thus, unlike the 43% we expected for the 3
hexagons to carry, we see that they carry approximately
20−25% of the weight. The higher the weight is, the more
focused the compression is of the overall structure, leading to
the large dip from 100-120 g. This dip corresponds to when
we switched from having multiple smaller weights to one
large 100 g weight which had a more focused compression
effect. More experiments are needed to tease out a tighter
relationship between weight positioning and measured re-
sponse.

Nevertheless, despite this variation, we do see that there
is an overall trend for larger weights leading to a larger
response in the pressure sensors. The sensors are able to
track very slight 10 g changes, provided that the force does
not overly compress the entire elastomeric structure. Even

Fig. 7. Using the calibration set of grocery items, we determine two
thresholds for classifying whether an item should be packed immediately
or not. This graph defines a region of interest for delicate objects, enabling
us to create a packing priority score metric.

on sensors that are not directly compressed, heavy weights
can be detected and differentiated from lighter weights.
This indicates that the tactile sensors provide information
about the grasp condition and can be used in more complex
grasping operations.

V. PACKING ALGORITHM

Now that we have detailed the individual components in
our system architecture, we next describe how they are all
integrated algorithmically into a single program. The previ-
ous section expanded on the outline from Fig. 2, discussing
how the vision system detects objects on the belt, how the
modified proprioceptive gripper can pick up objects securely,
and how the tactile sensors can read grasp information. In
this section, we discuss how the packing system determines
if an object is “delicate,” which is the key decision point that
determines whether we place an object into the buffer or into
the bin.

To evaluate this, we introduce the core metric of the pack-
ing priority score. This score determines how “delicate” an
object is as a combination of the vision and tactile readings.
An object’s fragility is extremely qualitative; however, it is
one of the main metrics that a human uses to decide on
how to pack objects [37], [38]. We attempt to make this
metric more quantitative by proposing that an object’s size
and stiffness can be leveraged to measure fragility. This is a
similar methodology to our previous work on sorting objects
for recycling [39]. Size can be determined through our
system’s vision sensors, while stiffness can be determined
by our system’s tactile sensors. Once we have a scoring
equation, we can use this score to determine whether non-
delicate objects should be packed in the bin directly or kept
in the buffer area until no items are found on the conveyor
belt. This then allows the system to pack the bin with buffer
items in descending order by priority score.

Using the item set shown in Fig. 3, we perform three
grasps on each of the 25 objects. For each grasp trial, we
calculate the average tactile output across all six sensors



(three sensors for each finger) and plot them against the
measured area of each object (Fig. 7). We manually add the
labels for “delicate” vs. “non-delicate” objects to this graph
to see if we can classify delicate vs. non-delicate objects.

From this plot, we make two major observations. First,
we see a general trend that delicate objects tend to apply
lower amounts of force to the tactile sensors. We believe
that this is due to their compliance preventing a larger force
resistance against the gripper, which is consistent with the
lower grasping force seen in the soft grasping mode in [17].
This leads to a decision boundary to separate most delicate
items from non-delicate items. Specifically, the line has
intercept 864 Pa and slope −0.564 Pa/cm2, as shown by the
solid line in Fig. 7.

Second, we notice that some items fail to yield significant
tactile sensor readings, staying close to the x-axis. These
items are mostly rigid, non-delicate items. Unlike compliant
items which deform to adapt their shape to the gripper and
increase the contact patch, rigid items do not yield, instead
maintaining minimal contact with the gripper. To separate
these items from true delicate items, we introduce a threshold
for rigid items at 134 Pa, as shown by the dashed line in
Fig. 7.

With these two constraints, we now can evaluate the pack-
ing priority score. When conducting the packing algorithm,
we measure the size of the object A using the bounding box
technique described in Sec. IV-A and the grasping pressure
Pg on the object using the tactile sensors described in Sec. IV-
C. The priority score p thus becomes a weighted version of
these area and pressure readings. Based on our thresholds,
we determine Pg < 864− 0.564A and Pg > 134. Thus, the
equation to determine the priority score is p= 0.564A+Pg >
864. In words, items with a priority score of less than
864 are deemed delicate, while items with a priority score
of 864 or greater are deemed not delicate. With this, we
have successfully achieved a closed-form formula we can
use in online evaluations to determine whether an object is
“delicate.”

VI. GROCERY PACKING EXPERIMENT

Finally, we describe how we adapt our general packing
algorithm to a grocery packing case study. Our experimental
setup consists of a UR5 robot arm outfitted with the pro-
prioceptive gripper described in Sec. IV-B. In front of the
robot is a conveyor belt running at constant speed (0.1 m/s)
on which items are manually loaded. Three small tables are
supplied adjacent to the robot to provide the buffer. To the
side of the robot is a cardboard box, which serves as the bin.
For ease of detection, this bin has colored markers along its
boundary.

To perform online bin packing, the vision system monitors
for objects on the conveyor belt. Once the vision system sees
an object, the robot arm grasps the object using a fixed grasp
pose perpendicular to the belt movement. The system then
evaluates the grasped object’s priority score by measuring its
area and averaging tactile sensor readings over a one second
period. If the priority score is outside of the delicate object

threshold, the robot will directly pack it. Otherwise, the robot
will place the object into the buffer zone. When no objects
are present on the conveyor belt, the robot will grasp objects
in the buffer zone in descending priority score order.

A. Task Evaluation

To evaluate our packing system, we conducted three
grocery packing experiments with a new set of 15 objects to
pack (Fig. 8-top). Unlike the prior set of calibration objects
(Fig. 3), all of these were chosen to be realistic grocery items,
including some very out-of-distribution objects like kale in
a produce bag. Each object was given two binary labels:
delicate/not delicate, and heavy/not heavy1. We defined that
a “bad pack” occurred when a heavy object was placed on
top of a delicate object. This would result in damage to the
delicate object, for example when the heavy soup can crushes
the pack of chips. This was a consistent definition with the
ambiguous qualities that defined “good” grocery packing
from humans [37], [38]. We performed three trials on these
objects. For each trial, we chose 10 objects randomly and
randomized the order which they were presented. To compare
across baselines, the sequences selected were:

• Trial 1: kale, ice cream, crackers, seaweed, pot roast,
baking soda, muffin, chips, gum, soup

• Trial 2: bread, kale, stroopwafels, pot roast, muffin,
cheese, chips, sprinkles, gum, crackers

• Trial 3: cheese, muffin, crackers, pot roast, soup, chips,
stroopwafels, Pringles, ice cream, seaweed

We compared our multimodal approach against (1) a
baseline experiment where objects were dropped in exactly
the same spot every time, and (2) an algorithm that used only
our vision system to determine where to pack objects. More
specifically:

• Baseline: Vision and proprioceptive outputs are used
only to ensure objects are grasped. All objects are
packed immediately and in the center of the box.

• Vision-Only: Vision and proprioceptive outputs are
used to ensure objects are grasped. In addition, vision
provides an estimate of object shape (bounding box
area) that is used to calculate the location where the
object is packed. Items with object size greater than
a threshold2 are considered “large” and are packed
immediately, while smaller items are packed later. Items
in the buffer are packed by order of decreasing size.

We did not explore a baseline of only tactile sensing as
that approach would not be able to detect objects on the
conveyor belt.

B. Results

Overall, the results of the grocery packing scenario demon-
strates that additional sensing greatly improves the packing
performance of the robotic system (Fig. 8). As expected,

1Specifically, the delicate items were the bread, chips, crackers, kale,
muffin, seaweed, and stroopwafels. The heavy objects were the baking soda,
gum, ice cream, pot roast, soup, sprinkles, and stroopwafels.

2experimentally set to be 80 cm2 based on the items in Fig. 3



Fig. 8. (Top) The 15 objects used to evaluate the packing system. (Bottom)
Results of packed bins for each of the three trials for baseline, vision, and
multimodal experiments.

the baseline experiment results in poor packing, with an
average of six potentially damaging occurrences of a heavy
item dropped on a fragile item (”bad packs”) per trial. The
vision experiment produces improved packing performance,
with an average of three bad packs per trial. Meanwhile, the
multimodal experiment averaged less than one bad pack per
trial, a 9× improvement over the baseline system and a 4.5×
improvement over the vision system.

All bad packs performed during the multimodal trials
embody intricacies of real-world grocery packing. More
specifically, packing the bag of stroopwaffels on top of other
delicate items exemplified one such intricacy because the
stroopwaffels were considered both delicate and heavy. This
meant that prioritizing the safety of this item could mean
potentially damaging other objects; however, packing it first
could result in it sustaining damage itself.

Meanwhile, bad packs in the vision trials reflected the fact
that large objects do not necessarily mean less delicate ob-
jects. For Trial 2, the bread was packed earlier in the process
for both the baseline and vision trials than in the multimodal

trial. Since the bread is so large, this essentially guaranteed
that the bread would be crushed under subsequently packed
items. Overall, our results demonstrate the importance of
having a more detailed knowledge of an object than pure
vision alone can provide.

VII. DISCUSSION AND FUTURE WORK

In this work, we have shown a soft robotic system that
leverages multimodal sensing input to pack groceries in an
online fashion with a human-legible “well-packed” metric.
To achieve this, we synthesized an external vision system, a
set of fluidic-based tactile sensors, and a proprioceptive soft
gripper into an integrated packing system. Unlike previous
packing methods, we avoid creating models of the items
to be packed. Instead, we embrace the variety of shapes,
sizes and stiffness and perform significantly better than
baseline systems with minimal pre-computation. Our system
combines the robust safe handling of soft grippers with
the richness of a multimodal sensor suite to outperform
traditional vision-only based approaches in this complex task.

For the future, there is significant work that could be
explored with more robust tactile and proprioception sensing.
In this work, we did not use the fact that the gripper’s
proprioception also provides size information about the ob-
ject. Combining this information with vision could provide
a tighter size estimate than the relatively simple approach
of bounding box size. Our current work has also shown
that positioning is extremely important for tactile sensor
feedback. Exploring different configurations of soft sensors
could better ensure contact between the soft fingers and target
objects, turning our sensitivity into an advantage.
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